Breakthrough in worm research has implications for human disease studies

It's just a worm, a tiny soil-dwelling nematode worm – but the implications are big for biomedicine and circadian biology as shown in a recent study authored by University of Nevada, Reno researcher Alexander van der Linden. The article on the circadian clock of the Caenorhabditis elegans worm was published in the peer-reviewed, open-access journal, PLoS Biology.

"Circadian rhythms are important in all organisms because they regulate biological functions such as food intake, temperature, metabolic rate and sleep," van der Linden said. "The discovery of clock-controlled genes in C. elegans should lead to an expanded research role in , and give a better understanding of the mammalian .

For more than two decades, researchers have wondered whether C. elegans, one of the foremost research model organisms, contains a circadian clock. Circadian rhythmic behaviors described previously in C. elegans are variable and hard to quantify, and no genes were known to exhibit gene expression oscillations with 24-hour cycles as shown in many other animals.

Now, a team of researchers led by professors of biology Piali Sengupta and Michael Rosbash at Brandeis University, Waltham, and lead author van der Linden, who is a former postdoctoral fellow in the Sengupta Lab and now assistant professor in the College of Science at the University of Nevada, Reno, has uncovered genes in C. elegans under clock control from both light and temperature.

"C. elegans offers several advantages to study the function of human disease genes through their corresponding worm ," he said. "We now not only have a new model to study the function of this important biological clock, but we can also study how the clock evolved over time, since nematodes and humans diverged about 600 to 1,200 million years ago."

Almost every organism on earth exhibits circadian rhythms – periodic cycles of behavior or gene expression that repeat roughly every 24 hours. These rhythms are generated by a circadian clock – an internal time-keeping mechanism – which can be entrained and synchronized by environmental signals such as temperature or light/dark cycles.

"Given its small and well-mapped nervous system, combined with a wealth of available genetic and behavioral tools, C. elegans is a viable research organism in the circadian field," van der Linden said. "The next critical step will be to determine how these worm molecular rhythms relate to circdian behavioral rhythms."

Provided by University of Nevada, Reno

Citation: Breakthrough in worm research has implications for human disease studies (2010, December 17) retrieved 18 April 2024 from https://phys.org/news/2010-12-breakthrough-worm-implications-human-disease.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Mammals, fruit flies: same biological clock

0 shares

Feedback to editors