Researchers show an oncolytic virus switches off cancer cell surival signal

Researchers from Boston University School of Medicine (BUSM) have identified a mechanism by which specific viruses acting as oncolytic agents can enter and kill cancer cells. This finding, which is currently featured in an online edition of the Journal of Virology, could help lead to the development of more targeted treatments against many types of cancer.

The study was conducted by Ewan F. Dunn, a postdoctoral fellow, under the direction of John H. Connor, an assistant professor of microbiology at BUSM.

The virus, known as vesicular stomatitis virus (VSV), is being developed in the Connor lab and in other international research laboratories to kill cancer cells. VSV is not a significant human pathogen.

VSV is sensitive to the innate immune response, which causes lymphocytes to release interferon and protect the body from developing an infection. Cancer cells lose the ability to respond in that way, said Dunn. "When cancer cells transform, they become non-responsive, leaving them vulnerable to viruses attacking the cell and its function."

Previous research has shown that a major in cancer cells, called the AKT signaling pathway, is frequently turned on. AKT signaling is a cell survival signal, helping to keep the cancer cells alive. The team demonstrated was that VSV can switch off that signaling pathway, which suggests that a single could play a major role in cancer cell death.

"This study showed the important role of VSV in killing through turning off a major survival signal," added Connor. "The identification of this mechanism is fundamental to understanding how VSV and other oncolytic viruses function."

Provided by Boston University Medical Center
Citation: Researchers show an oncolytic virus switches off cancer cell surival signal (2010, December 1) retrieved 25 April 2024 from https://medicalxpress.com/news/2010-12-oncolytic-virus-cancer-cell-surival.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Anti-cancer virus kills brain cancer cells

 shares

Feedback to editors