Trouble with the latest dance move? GABA chemical messenger might be to blame

If you tend to have trouble picking up the latest dance moves or learning to play a new piano piece, there might be an explanation. A new study published online on March 3rd in Current Biology, a Cell Press publication, shows that people who are fast to learn a simple sequence of finger motions are also those whose brains show large changes in a particular chemical messenger following electrical stimulation.

That , known as , is important for the plasticity of the , a brain region involved in planning, control, and execution of voluntary movements.

"There is considerable variability in motor learning behavior across individuals," said Charlotte Stagg of the University of Oxford. "We aimed to test whether some of this variability could be explained by variation in responsiveness of the GABA system."

The researchers used to directly measure GABA levels in the brain both before and after a low-level current was delivered through research participants' scalps. That procedure, called anodal transcranial direct current stimulation (tDCS), is known to produce a decrease in GABA within the motor cortex. The exercise therefore allowed the researchers to quantify individuals' baseline GABA levels and their "GABA responsiveness."

On a separate day, those individuals were asked to learn a sequence of finger motions while their brains were again scanned by (fMRI). It turned out that those who were more GABA responsive were also quicker to learn the simple motor task. The brains of more GABA-responsive individuals also showed greater activation in the motor cortex during learning. The researchers also found that those with higher GABA concentrations at baseline tended to have slower reaction times and less during learning.

The findings suggest that GABA responsiveness may be key in the motor cortex for making the that are the cellular basis for learning and memory, the researchers say. They also offer an important window into recovery after brain injury, such as a stroke.

GABA levels can change after that kind of brain trauma, and the findings support the idea that treatments designed to influence GABA levels might improve learning. In fact, tDCS is already in use as a tool for motor rehabilitation in stroke patients.

"This shows how that might work," Stagg said. It may also lead to strategies for making those improvements longer lasting, she added.

Provided by Cell Press
Citation: Trouble with the latest dance move? GABA chemical messenger might be to blame (2011, March 3) retrieved 18 April 2024 from https://medicalxpress.com/news/2011-03-latest-gaba-chemical-messenger-blame.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Yoga and elevated brain GABA levels

 shares

Feedback to editors