NJIT professor develops biologically-inspired catalysis active, yet inert materials

NJIT Associate Professor Sergiu M. Gorun is leading a research team to develop biologically-inspired catalysis active, yet inert, materials. The work is based on organic catalytic framework made sturdy by the replacement of carbon-hydrogen bonds with a combination of aromatic and aliphatic carbon-fluorine bonds. Graduate students involved with this research recently received first place recognition at the annual NJIT Dana Knox student research showcase.

The newest focus of Gorun's research has been the cobalt complex as a for which the known degradation pathways appear to have been suppressed. "Broadening the Reactivity Spectrum of a Phthalocyanine Catalyst While Suppressing Its Nucleophilic, Electrophilic and Radical Degradation Pathways" by Gorun and others appeared in the web issue of Dalton Transactions (2011), ASAP Communication. Similar to a previous publication, this recent one addresses an important industrial process, the "sweetening" of by the transformation of smelly and corrosive thiols into disufides. The extreme electronic deficiency of the new catalyst metal center allows it to process molecules that are not reactive in the presence of regular catalysts that perform this chemistry industrially.

Two years ago Gorun and his team reported that the related zinc perfluoroalkylated phthalocyanine, a molecule resembling the porphyrin core of several heme enzymes, exhibit highly-efficient photochemical of an organic substrate. This was of great interest to the fragrance industry ("Rational design of a reactive yet stable organic-based photocatalyst" Dalton Transactions, 2009, 1098).

Concurrently, the unusual properties of Gorun's are explored in parallel in constructing surface coatings, an area in which Gorun was awarded US patent 7,670,684. Several publications describe the properties of the new coatings.

More information: DOI: 10.1039/C1DT10458F

Provided by New Jersey Institute of Technology

Citation: NJIT professor develops biologically-inspired catalysis active, yet inert materials (2011, April 19) retrieved 29 March 2024 from https://phys.org/news/2011-04-njit-professor-biologically-inspired-catalysis-inert.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers awarded patent for hydrophobic, corrosion-resistant coating

0 shares

Feedback to editors