Research team shows nuclear clock could be 60 times more accurate than atomic clock

Research team shows nuclear clock could be 60 times more accurate than atomic clock
Partial energy-level diagram of the 5F5/2 electronic ground levels within the nuclear ground and isomer manifold of 229Th3+. See arXiv:1110.2490v1 paper for details. Credit: arXiv:1110.2490v1

(PhysOrg.com) -- For almost sixty years, the world has considered the atomic clock the gold standard for keeping time. Its accuracy is such that it drifts by only about four seconds over a period of about thirteen and a half billion years (about the time since the Big Bag is thought to have occurred). Now it appears a new more accurate way to measure time might be on the horizon. Corey Campbell at the Georgia Institute of Technology and five of his colleagues have teamed together to describe in their paper pre-published on arXiv, how a more accurate nuclear clock might be devised.

While the is based on vibrations of orbiting an atom, the nuclear clock would instead be based on tuning the of electrons that cause the nucleus of an atom to jump back and forth between high and low using a very specific frequency of light. The result, the researchers say, would be a clock tuned by a laser that would drift only about one second in 200 billion years, or 14 times the believed and 60 times more accurate than current atomic clocks. The only trick here apparently, is in figuring out just what that frequency would be.

For most people, the accuracy of a clock isn’t really all that much of a big deal. For this reason something called Coordinated Universal Time (UTC) is used for ordinary living. It’s derived from atomic clock measurements but also uses leap seconds based on the rotation of the earth to help keep everyone straight. For other applications though, more accuracy is needed. GPS is one such example. Because there are four satellites used for GPS tracking, some means of timing their signals must be used to coordinate data sent from them and relayed to Earth based navigation systems. The smaller the errors in timing, the more accurate the systems become.

The main reason the nuclear clock would be so much more accurate than the atomic clock is due to the fact that atomic clocks are susceptible to ambient magnetic and electric fields that can throw off the vibrations of the electrons a tiny bit. Using a laser to precisely control the nucleus bouncing between states however would not be nearly as susceptible to such interference.

More information: A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place, arXiv:1110.2490v1 [physics.atom-ph] arxiv.org/abs/1110.2490

Abstract
The 7.6(5) eV nuclear magnetic-dipole transition in a single 229Th3+ ion may provide the foundation for an optical clock of superb accuracy. A virtual clock transition composed of stretched states within the 5F5/2 electronic ground level of both nuclear ground and isomeric manifolds is proposed. It is shown to offer unprecedented systematic shift suppression, allowing for clock performance with a total fractional inaccuracy approaching 1 x 10^-19.

via Newscientist

© 2011 PhysOrg.com

Citation: Research team shows nuclear clock could be 60 times more accurate than atomic clock (2011, November 9) retrieved 26 April 2024 from https://phys.org/news/2011-11-team-nuclear-clock-accurate-atomic.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Portable Precision: A New Type of Atomic Clock

3 shares

Feedback to editors