Over 65 million years North American mammal evolution has tracked with climate change

Over 65 million years North American mammal evolution has tracked with climate change
This painting by artist Carl Buell depcits a scene from the late Eocene of North America. The rhino‑like animals in the background are brontotheres. The pony‑sized Hyracodon, a closer relative of living rhinos, in the foreground. Credit: Courtesy of Carl Buell

Climate changes profoundly influenced the rise and fall of six distinct, successive waves of mammal species diversity in North America over the last 65 million years, shows a novel statistical analysis led by Brown University evolutionary biologists. Warming and cooling periods, in two cases confounded by species migrations, marked the transition from one dominant grouping to the next.

History often seems to happen in waves – fashion and musical tastes turn over every decade and empires give way to new ones over centuries. A similar pattern characterizes the last of natural history in , where a novel quantitative analysis has identified six distinct, consecutive waves of mammal species diversity, or "evolutionary faunas." What force of history determined the destiny of these groupings? The numbers say it was typically .

"Although we've always known in a general way that mammals respond to climatic change over time, there has been controversy as to whether this can be demonstrated in a quantitative fashion," said Brown University evolutionary biology Professor Christine Janis. "We show that the rise and fall of these faunas is indeed correlated with climatic change – the rise or fall of global paleotemperatures – and also influenced by other more local perturbations such as immigration events."

Specifically, of the six waves of species diversity that Janis and her Spanish collaborators describe online this week in the Proceedings of the National Academy of Sciences, four show statistically significant correlations with major changes in temperature. The two transitions that show a weaker but still apparent correlation with the pattern correspond to periods when mammals from other continents happened to invade in large numbers, said Janis, who is the paper's senior and second author.

Previous studies of the potential connection between climate change and mammal species evolution have counted total species diversity in the fossil record over similar time periods. But in this analysis, led by postdoctoral scholar Borja Figueirido, the scientists asked whether there were any patterns within the species diversity that might be significant. They were guided by a similar methodology pioneered in a study of "evolutionary faunas" in marine invertebrates by Janis' late husband Jack Sepkoski, who was a paleontologist at the University of Chicago.

What the authors found is six distinct and consecutive groupings of that shared a common rise, peak and decline in their numbers. For example, the "Paleocene fauna" had largely given way to the "early-middle Eocene fauna" by about 50 million years ago. Moreover, the authors found that these transfers of dominance correlated with temperature shifts, as reflected in data on past levels of atmospheric oxygen (determined from the isotopes in the fossilized remains of deep sea microorganisms).

By the numbers, the research showed correlations between and temperature change, but qualitatively, it also provided a narrative of how the traits of typical species within each wave made sense given the changes in vegetation that followed changes in climate. For example, after a warming episode about 20 million years in the early Miocene epoch, the dominant vegetation transitioned from woodland to a savannah-like grassland. It is no surprise, therefore, that many of the herbivores that comprised the accompanying "Miocene fauna" had high-crowned teeth that allowed them to eat the foods from those savannah sources.

To the extent that the study helps clarify scientists' understanding of evolution amid climate changes, it does not do so to the extent that they can make specific predictions about the future, Janis said. But it seems all the clearer that climate change has repeatedly had meaningful effect over millions of years.

"Such perturbations, related to anthropogenic climatic change, are currently challenging the fauna of the world today, emphasizing the importance of the fossil record for our understanding of how past events affected the history of faunal diversification and extinction, and hence how future climactic changes may continue to influence life on earth," the authors wrote in the paper.

Provided by Brown University

Citation: Over 65 million years North American mammal evolution has tracked with climate change (2011, December 26) retrieved 20 April 2024 from https://phys.org/news/2011-12-million-years-north-american-mammal.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

British butterfly is evolving to respond to climate change

0 shares

Feedback to editors