Ultra-fast photodetector and terahertz generator

Ultra-fast photodetector and terahertz generator
Photodetectors made from graphene can process and conduct light signals as well as electric signals extremely fast. Within picoseconds the optical stimulation of graphene generates a photocurrent. Until now, none of the available methods were fast enough to measure these processes in graphene. Scientists at the Technische Universitaet Muenchen now developed a method to measure the temporal dynamics of this photo current. Furthermore they discovered that graphene can emit terahertz radiation. Credit: Image: TUM

Photodetectors made from graphene can process and conduct light signals as well as electric signals extremely fast. Within picoseconds the optical stimulation of graphene generates a photocurrent. Until now, none of the available methods were fast enough to measure these processes in graphene. Scientists at the Technische Universitaet Muenchen, Germany, now developed a method to measure the temporal dynamics of this photo current. Furthermore they discovered that graphene can emit terahertz radiation.

Graphene leaves a rather modest impression at a first sight. The material comprises nothing but ordered in a mono-layered "carpet". Yet, what makes graphene so fascinating for scientists is its extremely high conductivity. This property is particularly useful in the development of photodetectors. These are electronic components that can detect radiation and transform it into .

Graphene's extremely high conductivity inspires scientists to utilize it in the design of ultra-fast photodetectors. However, until now, it was not possible to measure the optical and of graphene with respect to time, i.e. how long it takes between the electric stimulation of graphene and the generation of the respective .

Alexander Holleitner and Leonhard Prechtel, scientists at the Walter Schottky Institut of the TU Muenchen and members of the Cluster of Excellence Nanosystems Initiative Munich (NIM), decided to pursue this question. The physicists first developed a method to increase the time resolution of photocurrent measurements in graphene into the picosecond range. This allowed them to detect pulses as short as a few picoseconds. (For comparison: A light beam traveling at light speed needs three picoseconds to propagate one millimeter.)

The central element of the inspected photodetectors is freely suspended graphene integrated into via metallic contacts. The temporal dynamics of the photocurrent were measured by means of so-called co-planar strip lines that were evaluated using a special time-resolved laser spectroscopy procedure – the pump-probe technique. A laser pulse excites the electrons in the graphene and the dynamics of the process are monitored using a second laser. With this technique the physicists were able to monitor precisely how the photocurrent in the graphene is generated.

At the same time, the scientists could take advantage of the new method to make a further observation: They found evidence that graphene, when optically stimulated, emits radiation in the terahertz (THz) range. This lies between infrared light and microwave radiation in the electromagnetic spectrum. The special thing about THz radiation is that it displays properties shared by both adjacent frequency ranges: It can be bundled like particle radiation, yet still penetrates matter like electromagnetic waves. This makes it ideal for material tests, for screening packages or for certain medical applications.

More information: Time-resolved ultrafast photocurrents and terahertz generation in freely suspended grapheme. Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner, Nature Communications, dx.doi.org/10.1038/ncomms1656

Journal information: Nature Communications

Provided by Technische Universitaet Muenchen

Citation: Ultra-fast photodetector and terahertz generator (2012, January 31) retrieved 28 March 2024 from https://phys.org/news/2012-01-ultra-fast-photodetector-terahertz.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New material promises faster electronics

0 shares

Feedback to editors