When ions get closer: New physical attraction between ions in quantum plasmas

Nowadays, ever smaller and more powerful computer chips are in demand. German physicists have discovered a new physical attraction that accelerates this progress.

Prof. Dr. Padma Kant Shukla and Dr. Bengt Eliasson found a previously unknown phenomenon in quantum plasmas. A negatively charged potential makes it possible to combine positively charged particles (ions) in atom-like structures within the plasma. In this way, current can be conducted much more quickly and efficiently than before, opening new perspectives for nanotechnology. The researchers report on their findings in Physical Review Letters.

An ordinary plasma is an ionized electrically conducting gas consisting of positive (ions) and negative (so-called non-degenerate electrons). This is the chief constituent of our solar system. On Earth, such plasmas among others can be used to produce energy in controlled plasmas similar to the sun, or even to fight disease in the medical application field.

Quantum plasmas extend the area of application to nano-scales, where quantum-mechanical effects gain significance. This is the case when, in comparison to normal plasmas, the plasma density is very high and the temperature is low. Then the newly discovered potential occurs, which is caused by collective interaction processes of degenerate electrons with the quantum plasma. Such plasmas can be found, for example, in cores of stars with a dwindling nuclear energy supply (), or they can be produced artificially in the laboratory by means of . The new negative potential causes an between the ions, which then form lattices. They are compressed and the distances between them shortened, so that current can flow through them much faster.

The findings of the Bochum scientists open up the possibility of ion-crystallization on the magnitude scale of an atom. They have thus established a new direction of research that is capable of linking various disciplines of physics. Applications include micro-chips for quantum computers, semiconductors, thin metal foils or even metallic nano-structures.

More information: P. K. Shukla and B. Eliasson (2012): Novel Attractive Force Between Ions in Quantum Plasmas, Physical Review Letters 108, in press.

Journal information: Physical Review Letters

Provided by Ruhr-University Bochum

Citation: When ions get closer: New physical attraction between ions in quantum plasmas (2012, March 26) retrieved 19 March 2024 from https://phys.org/news/2012-03-ions-closer-physical-quantum-plasmas.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Electrons in concert: A simple probe for collective motion in ultracold plasmas

0 shares

Feedback to editors