Outwitting mutating flu during a pandemic

(PhysOrg.com) -- In a global influenza pandemic, small stockpiles of a secondary flu medication - if used early in local outbreaks - could extend the effectiveness of primary drug stockpiles, according to research made available April 30 ahead of publication in PLoS Medicine.

Many countries are investing in large stockpiles of a single drug, oseltamivir (). But viruses can become resistant to antiviral drugs, and the widespread use of a single drug is likely to increase the risk that a resistant strain will emerge. If such a strain were to spread widely, the effectiveness of antiviral drugs in treating infected patients, as well as their ability to slow the spread of a pandemic, would be greatly reduced.

Using a to represent the global spread of , an international team of researchers led by Joseph Wu of the University of Hong Kong, and including collaborators in the U.K. and the United States, found that treating as few as only the first 1 percent of the population in a local epidemic with a secondary drug rather than with oseltamivir could substantially delay the development of resistance to oseltamivir.

This reduction in resistance was predicted to benefit not only local populations, but also those in distant parts of the world where the pandemic would subsequently spread through air travel. Marc Lipsitch, professor of epidemiology in the Department of Epidemiology at Harvard School of Public Health, is one of the five co-authors of the study.

In the context of the currently emerging swine flu, the secondary drug could be zanamivir (Relenza), the only other approved drug to which the new H1N1 strain has been found to be susceptible.

This strategy is predicted to be effective because it delays use of the primary stockpiled drug until a certain proportion of the local population (about 1.5 percent according to the model) has been infected with a virus that remains susceptible to the primary drug. With a drug-sensitive virus in the majority as people recover from infection and develop immunity, only a minority of further infections are likely to be resistant to the primary drug.

Technically, such a delay could be achieved by postponing the launch of any antiviral intervention. However, because even a short delay would mean denying to people who would benefit from them, the researchers instead propose the deployment of a small stockpile of a secondary antiviral during the early phase of the local epidemic.

The model, prepared before the current swine flu crisis, considered two possible strategies, “early combination chemotherapy” (treatment with two drugs together while both are available, assuming that clinical trials show such a combination to be safe for patients) and “sequential multi-drug chemotherapy” (treatment with the secondary drug until its stockpile is exhausted, then treatment with the primary drug). While either strategy could be effective in principle, only the sequential strategy would be practical in responding to the currently emerging H1N1 , because the safety of combining zanamivir with oseltamivir (for combination therapy) is not established.

After simulating the impact of these strategies in a single population, the researchers then introduced international travel data into their model to investigate whether these two strategies could limit the development of antiviral resistance at a global scale. This analysis predicted that, provided the population that was the main source of used one of the strategies, both strategies in distant, subsequently affected populations would be able to reduce the consequences of resistance, even if some intermediate populations failed to control resistance.

More information: www.plosmedicine.org/

Provided by Harvard University (news : web)

Citation: Outwitting mutating flu during a pandemic (2009, May 4) retrieved 19 April 2024 from https://medicalxpress.com/news/2009-05-outwitting-mutating-flu-pandemic.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Using a small stockpile of a secondary antiviral drug in a flu pandemic

 shares

Feedback to editors