Understanding the brain's natural foil for over-excited neurons

Glutamate is to the brain like coffee is to our bodies. A cup of Joe in the morning can wake us, but overloading on caffeine causes the stimulant to work against us.

Glutamate is the major excitatory neurotransmitter in a mammal's central nervous system. It is an important component for neuroplasticity, the synaptic communication between neurons. It's also key to learning and memory. But in high concentrations, glutamate becomes toxic-- over-exciting the . Glutamate-induced excitotoxicity is known to exacerbate damage caused by brain injury, stroke and other neurodegenerative diseases.

In order to understand possible ways to reduce the damage of excessive glutamate, researchers at Georgetown University Medical Center have shown how, when high concentrations of glutamate activate the metabotropic glutamate receptor 1 (mGlu1 receptors), they become protective. This concentration of glutamate is normally toxic.

The study, presented at the 39th annual meeting of the Society for Neuroscience, suggests that this glutamate-induced protection occurs due to the association of mGlu1 receptors with the intracellular protein β-arrestin, which causes a sustained phosphorylation of mitogen-activated protein kinases, and protects cells from apoptotic death.

"Studies about the signal transduction involved in mGlu1-mediated neuroprotection may enhance our understanding of the role that this glutamate receptor plays in ," explains Andrew Emery, a PhD candidate in the Interdisciplinary Program in Neuroscience at GUMC. "Such studies may contribute to rational drug design for potential therapeutic approaches to protect against excitotoxic brain damage following injury, stroke and .

Source: Georgetown University Medical Center (news : web)

Citation: Understanding the brain's natural foil for over-excited neurons (2009, October 19) retrieved 18 April 2024 from https://medicalxpress.com/news/2009-10-brain-natural-foil-over-excited-neurons.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Cell's split personality is a major discovery into neurological diseases

 shares

Feedback to editors