Gravity-like theories give insight into the strong force

A new computation of the constant that describes the strength of the force between the quarks in a proton may help theorists tackle one of the most challenging problems of physics: analytically solving the theory of QCD and determining its coupling strength at large distances.

Quantum Chromodynamics is the theory of the strong force, describing how combine to make the protons and neutrons in the of the atom. While the strong force strength is known to be weak at small separation between quarks, its value and behavior at large distances is uncertain and hotly debated.

To tackle that problem, three scientists, including one based at DOE's Jefferson Lab, computed the constant that describes the strength of the force between the quarks in a proton. They computed the constant using a novel approach: the Maldacena conjecture, a method that connects QCD-like theories in physical space to gravity-like theories in a mathematical five-dimensional space.

The calculation showed that the Maldacena conjecture provides an analytical way to solve QCD. Their analysis also clarifies why different earlier calculations have yielded different values for the constant, thus giving new insights into how to consistently define coupling, as well as providing new non-trivial tests of QCD.

A paper describing the result was published on May 28 in the journal Physical Review D.

Provided by Jefferson Lab

Citation: Gravity-like theories give insight into the strong force (2010, June 7) retrieved 1 May 2024 from https://phys.org/news/2010-06-gravity-like-theories-insight-strong.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

MIT physicist to describe strange world of quarks, gluons

1 shares

Feedback to editors