Researchers develop database to help accelerate drug discovery

Researchers from Mount Sinai School of Medicine have developed a new computational method that will help streamline the analysis of gene expression experiments and provide scientists with a better mechanistic understanding of the differences between diseased and normal cells. The new database and software, called ChIP Enrichment Analysis (ChEA), will revolutionize how researchers identify drug targets and biomarkers.

Researchers can find the tool online at http://amp.pharm.mssm.edu/lib/chea.jsp. The data are published in the September 15th issue of Bioinformatics.

Until ChEA was developed, there was no centralized database that integrated results from ChIP-seq and ChIP-chip experiments—two types of experiments used to identify how proteins called potentially regulate all genes in humans and mice. The data that results from these types of experiments is substantial and computational biologists have struggled with how to integrate them. Led by Avi Ma'ayan, PhD, Assistant Professor, Pharmacology and Systems Therapeutics, a team at Mount Sinai integrated the results from these experiments, collecting data from more than 100 proteins that bind DNA to regulate gene expression, called transcription factors, into one database.

"Using ChEA, we were able to link these transcription factors to the genes they regulate for the first time," said Dr. Ma'ayan. "Our program allows researchers to identify which proteins are likely responsible for that may cause disease. Using our database, researchers will be able to better identify drug targets."

Dr. Ma'ayan's team tested ChEA in several case studies. One case study looked at two independent publications that found signature sets of genes that indicate whether a was benign or malignant. Both studies came up with lists of genes that were biomarkers of each tumor type. However, the list uncovered in one study did not match the list in the other study; in fact, there was very little overlap in the biomarkers discovered in each study. However, when Dr. Ma'ayan entered the two lists into ChEA, he determined that the genes on both lists have the same regulatory , which determines the aberrant expression of these biomarker .

"Our reanalysis of these two publications verifies the usefulness of this software and database in gaining a better mechanistic understanding of the role transcription factors play in controlling , and subsequently, the development of disease," said Dr. Ma'ayan.

Provided by The Mount Sinai Hospital
Citation: Researchers develop database to help accelerate drug discovery (2010, September 15) retrieved 23 April 2024 from https://medicalxpress.com/news/2010-09-database-drug-discovery.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

'Moonlighting' molecules discovered

 shares

Feedback to editors