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In a banded matrix, all the nonzero entries cluster around the diagonal. Graphic:
Christine Daniloff

A new way of analyzing grids of numbers known as matrices could
improve signal-processing applications and data-compression schemes.

Among the most common tools in electrical engineering and computer
science are rectangular grids of numbers known as matrices. The
numbers in a matrix can represent data: The rows, for instance, could
represent temperature, air pressure and humidity, and the columns could
represent different locations where those three measurements were
taken. But matrices can also represent mathematical equations. If the
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expressions t + 2p + 3h and 4t + 5p + 6h described two different
mathematical operations involving temperature, pressure and humidity
measurements, they could be represented as a matrix with two rows, [1 2
3] and [4 5 6]. Multiplying the two matrices together means performing
both mathematical operations on every column of the data matrix and
entering the results in a new matrix. In many time-sensitive engineering
applications, multiplying matrices can give quick but good
approximations of much more complicated calculations.

In a paper published in the July 13 issue of Proceedings of the National
Academy of Science, MIT math professor Gilbert Strang describes a new
way to split certain types of matrices into simpler matrices. The result
could have implications for software that processes video or audio data,
for compression software that squeezes down digital files so that they
take up less space, or even for systems that control mechanical devices.

Strang’s analysis applies to so-called banded matrices. Most of the
numbers in a banded matrix are zeroes; the only exceptions fall along
diagonal bands, at or near the central diagonal of the matrix. This may
sound like an esoteric property, but it often has practical implications.
Some applications that process video or audio signals, for instance, use
banded matrices in which each band represents a different time slice of
the signal. By analyzing local properties of the signal, the application
could, for instance, sharpen frames of video, or look for redundant
information that can be removed to save memory or bandwidth.

Working backwards

Since most of the entries in a banded matrix — maybe 99 percent,
Strang says — are zero, multiplying it by another matrix is a very
efficient procedure: You can ignore all the zero entries. After a signal
has been processed, however, it has to be converted back into its original
form. That requires multiplying it by the “inverse” of the processing
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matrix: If multiplying matrix A by matrix B yields matrix C, multiplying
C by the inverse of B yields A.

But the fact that a matrix is banded doesn’t mean that its inverse is. In
fact, Strang says, the inverse of a banded matrix is almost always “full,”
meaning that almost all of its entries are nonzero. In a signal-processing
application, all the speed advantages offered by banded matrices would
be lost if restoring the signal required multiplying it by a full matrix. So
engineers are interested in banded matrices with banded inverses, but
which matrices those are is by no means obvious.

In his PNAS paper, Strang describes a new technique for breaking a
banded matrix up into simpler matrices — matrices with fewer bands.
It’s easy to tell whether these simpler matrices have banded inverses, and
if they do, their combination will, too. Strang’s technique thus allows
engineers to determine whether some promising new signal-processing
techniques will, in fact, be practical.

Faster than Fourier?

One of the most common digital-signal-processing techniques is the 
discrete Fourier transform (DFT), which breaks a signal into its
component frequencies and can be represented as a matrix. Although the
matrix for the Fourier transform is full, Strang says, “the great fact about
the Fourier transform is that it happens to be possible, even though it’s
full, to multiply fast and to invert it fast. That’s part of what makes
Fourier wonderful.” Nonetheless, for some signal-processing
applications, banded matrices could prove more efficient than the
Fourier transform. If only parts of the signal are interesting, the bands
provide a way to home in on them and ignore the rest. “Fourier
transform looks at the whole signal at once,” Strang says. “And that’s not
always great, because often the signal is boring for 99 percent of the
time.”
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Richard Brualdi, the emeritus UWF Beckwith Bascom Professor of
Mathematics at the University of Wisconsin-Madison, points out that a
mathematical conjecture that Strang presents in the paper has already
been proven by three other groups of researchers. “It’s a very interesting
theorem,” says Brualdi. “It’s already generated a couple of papers, and
it’ll probably generate some more.” Brualdi points out that large data
sets, such as those generated by gene sequencing, medical imaging, or
weather monitoring, often yield matrices with regular structures.
Bandedness is one type of structure, but there are others, and Brualdi
expects other mathematicians to apply techniques like Strang’s to other
types of structured matrices. “Whether or not those things will work, I
really don’t know,” Brualdi says. “But Gil’s already said that he’s going to
look at a different structure in a future paper.”

  More information: www.pnas.org/content/107/28/12413.abstract
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