

Tinkering with evolution: Ecological
implications of modular software networks

December 19 2011, by Stuart Mason Dambrot

Evolution of the modular structure of the network of dependencies between
packages of the Debian GNU/Linux operating system. Packages are represented
by nodes. A green arrow from package i to package j indicates that package i
depends on package j, and a red arrow indicates that package i has a conflict
with package j. Packages within a module (depicted by a big circle) have many
dependencies between themselves and only a few with packages from other
modules. During the growth of the operating system, the modular structure of the
network of dependencies has increased: (I) The new packages added in
successive releases depended mainly on previously existing packages within the
same module, and hence, the size of the modules created in earlier releases
increased over time; (ii) the number of modules also increased, although the new
modules consisted only of a few new packages; and (iii) the relative number of
dependencies between packages from different modules decreased. Moreover,
the relative number of conflicts between packages from different modules
decreased, whereas those within modules increased through the different releases
of the operating system. Copyright © PNAS, doi: 10.1073/pnas.1115960108

(PhysOrg.com) -- In the 1960s, Dr. Lawrence J. Fogel introduced what

1/6

would come to be known as evolutionary programming to the nascent
field of Artificial Intelligence in an attempt to produce intelligent
software without relying on neural networks modeled on the brain or
human expert-based heuristic programming. Now, researchers in the
Department of Ecology and Evolutionary Biology at Princeton
University have shown the inverse – namely, that network theory, when
applied to software systems, provides surprising insights into biology,
ecology and evolution. Specifically, they explored evolutionary behavior
in complex systems by analyzing how the Debian GNU/Linux operating
system utilizes modular code. The researchers found that how the
network becomes more modular over time in various OS installations
often parallels that of ecological relationships between interacting
species.

Lead researcher Miguel A. Fortuna, who worked with Juan A. Bonachela
and Prof. Simon A. Levin, Director of Princeton’s Center for
BioComplexity, describes the main challenges they encountered in
designing and implementing the methods used to analyze OS the
evolution. “The main difficulty we had was getting, organizing, and
storing the data,” says Fortuna. “Notice that the network of
interdependent packages of the last release analyzed was composed by
more than 100,000 dependencies. “This complexity required that they
use structuring query languages (SQL) for managing databases. “We
were very careful when identifying software packages through different
release – sometimes there could be different versions of the same
package within the same release due to the improvements made by
developers.”

While Fortuna notes that quantifying the increase of the code’s modular
structure time was the main insight of their study, he points out that
reuse of code and software’s hierarchical structure were suggested by the
pioneering work of Ricard V. Solé and Sergi Valverde in the early
2000s. “The interest that our paper has drawn has helped us to discover

2/6

http://www.princeton.edu/eeb/
http://www.princeton.edu/eeb/
http://ieg.ebd.csic.es/fortuna/
http://www.ugr.es/~jabonachela/
http://www.princeton.edu/~slevin/

work we did not know about software systems. The idea of using the
network of dependencies and conflicts of different releases of the
Debian operating system as a case study has facilitated the understanding
of how code development evolves over time without the need to go
deeper into the details of the code itself.”

Another key innovation cited by Fortuna was the team’s use of a very
precise method to detect the modular structure of the operating system.
“We borrowed an algorithm developed by physicists and widely used in
ecology nowadays. In fact, this work has been constantly enriched by an
interdisciplinary mixture of ideas from biology and physics.”

The team already has its eye on ways of improving and extending the
current experimental design. “The most important follow-up of our study
would be the exploration of proprietary software like the Microsoft
Windows operating system,” Fortuna comments. “Since Debian is the
result of a volunteer effort to create a free operating system, you have
the freedom to distribute copies, receive source code, modify the
software or use pieces of it in new free programs. The question then
becomes, what does the software development pattern looks like when
the company developing code doesn't offer this freedom to their users?
A comparison of the structure of both development strategies would be
more than interesting.”

They are also developing a dynamical model to mimic the growth of
Debian over time – an effort which, if successful, might let them predict
how many packages, dependencies, and conflicts will arise in the next
release of the operating system. An interesting question would be,” he
conjectures, “if there are limits to the number of packages that an
operating system can offer to the users without jeopardizing its
functionality and robustness. Following our analogy with the biological
evolution, we could ask if there is a limit to biodiversity, that is, to the
number of species that can coexist in our planet.”

3/6

Regarding potential analogies with evolution and ecology, Fortuna points
to macroevolution – that is, speciation and extinction processes – that he
sees as being in some ways equivalent to the creation of new packages
and the deprecation of those rendered obsolete from one release to the
next. “Does the probability of a species becoming extinct depend on how
long it’s been on the planet? In other words, are the most ancient species,
like crocodiles, the ones with higher risk of extinction? We can
formulate the question, which was already explored by Van Valen in the
1970's, by replacing species with software packages. Why do some
packages not exist after a subsequent release? Does a new software
package created in one of the earliest releases have a high probability to
persist over time? What does it depend on? We can calculate these
probabilities following the identity of the packages of the Debian
operating system through time. The data to do it are available, and we
therefore might learn something from software studies that help us
answer the biological question – because evolution works as a tinkerer in
both cases.”

In relation to the ecological processes, Fortuna illustrates, “When an
oceanic island is created colonization and extinction are the main
mechanisms that leads to the establishment of a stable community. This
community assembly would be equivalent to the package installation
process in a local computer. For example, dependencies and conflicts
between packages mimic predator-prey interactions and competitive
exclusion relationships, respectively. A predator can colonize the island
only if the prey it feeds on is already there.”

In Fortuna’s view, the same thing happens with software packages. “A
package can be installed in a computer only if the packages it depends
on are already installed. Ecologically similar prey species are going to
compete with each other in the island for light and nutrients so that the
best competitor is going to displace the others, which can then become
extinct. Predators feeding on extinct prey are going to disappear as well.

4/6

Conflicts between software packages have the same consequences: one
package cannot be installed in the computer if it has a conflict with an
already installed one, so that those packages depending on it cannot be
installed either. This parallelism can help us understand the general
principles operating on systems of different nature.”

Reminiscent of AI-based evolutionary programming, Fortuna also says
that their work might well lead to improved in silico models of
evolutionary biology and population ecology. “Charles Ofria and his lab
at Michigan State University are studying evolution by using self-
replicating computer programs able to mutate and evolve over time.”
The genome of these programs consists of a set of instructions that are
executed by the central processing unit (CPU). Some of the mutations
imply the insertion of random instructions into the genome. If the
mutant program is able to reproduce faster than the others, its genome is
going to persist through time.

“It could be interesting to explore to what extent new instructions added
to the genome interact with the preexisting ones – that is, whether or not
there is a reuse of the genome instructions of these digital organisms and
its resemblance with a modular structural pattern,” Fortuna observes.
“The interplay between ecology and computer science is much more
evident if we take a look at the work developed by Luis Zaman, Ofria's
graduate student, who is incorporating host-parasite interactions into
these computer programs.”

Looking further afield, Fortuna describes how other models or
applications might be targeted using the team’s findings. “The closest
study would be the comparison with the development pattern of other
GNU/Linux distributions – openSuse, Fedora, Gentoo, and so on – as
well as proprietary operating systems like Microsoft Windows and Apple
OS X. The information needed to accomplish this task would easily be
compiled for the first ones – but it will be much more difficult to get it

5/6

for the last ones. The algorithms for detecting modular structures are
publicly available. There are also powerful free SQL relational database
management systems like PostgreSQL and MySQL to store, organize,
and manage the information. So,’ he concludes, “the bottleneck is once
again data availability.”

 More information: Evolutionof a modular software network,
Publishedonline before print November 21, 2011, PNAS December 13,
2011 vol. 108 no. 50 19985-19989, doi: 10.1073/pnas.1115960108

Copyright 2011 PhysOrg.com.
All rights reserved. This material may not be published, broadcast,
rewritten or redistributed in whole or part without the express written
permission of PhysOrg.com.

Citation: Tinkering with evolution: Ecological implications of modular software networks (2011,
December 19) retrieved 18 May 2024 from https://phys.org/news/2011-12-tinkering-
withevolution-ecological-implications-modular.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://www.pnas.org/content/108/50/19985
https://phys.org/news/2011-12-tinkering-withevolution-ecological-implications-modular.html
https://phys.org/news/2011-12-tinkering-withevolution-ecological-implications-modular.html
http://www.tcpdf.org

