How HIV smuggles its genetic material into the cell nucleus

Each year, about 1 million individuals worldwide become infected with HIV, the virus that causes AIDS. To replicate and spread the infection, the virus must smuggle its genetic material into the cell nucleus and integrate ...

Decoding a key part of the cell, atom by atom

Whatever you are doing, whether it is driving a car, going for a jog, or even at your laziest, eating chips and watching TV on the couch, there is an entire suite of molecular machinery inside each of your cells hard at work. ...

Observing the secret life of molecules inside the cell

To understand how cells function, scientists study how their different components—from single molecules to multiple organelles—work together. Using traditional structural biology techniques, they can look at individual ...

Researchers film fundamental life process at cellular level

All proteins in a cell are assembled by complicated molecular machines. The precursors of these ribosomes are produced in the cell nucleus and then enter the cell through the so-called nuclear pores. Researchers at the University ...

page 1 from 8

Nuclear pore

Nuclear pores are large protein complexes that cross the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are about on average 2000 nuclear pore complexes in the nuclear envelope of a vertebrate cell, but it varies depending on cell type and throughout the life cycle. The proteins that make up the nuclear pore complex are known as nucleoporins. About half of the nucleoporins typically contain either an alpha solenoid or a beta-propeller fold, or in some cases both as separate structural domains. The other half show structural characteristics typical of "natively unfolded" proteins, i.e. they are highly flexible proteins that lack ordered secondary structure. These disordered proteins are the FG nucleoporins, so called because their amino-acid sequence contains many repeats of the peptide phenylalanine—glycine.

Nuclear pores allow the transport of water-soluble molecules across the nuclear envelope. This transport includes RNA and ribosomes moving from nucleus to the cytoplasm and proteins (such as DNA polymerase and lamins), carbohydrates, signal molecules and lipids moving into the nucleus. It is notable that the nuclear pore complex (NPC) can actively conduct 1000 translocations per complex per second. Although smaller molecules simply diffuse through the pores, larger molecules may be recognized by specific signal sequences and then be diffused with the help of nucleoporins into or out of the nucleus. This is known as the RAN cycle. Each of the eight protein subunits surrounding the actual pore (the outer ring) projects a spoke-shaped protein into the pore channel. The center of the pore often appears to contains a plug-like structure. It is yet unknown whether this corresponds to an actual plug or is merely cargo caught in transit.

This text uses material from Wikipedia, licensed under CC BY-SA