Polaritons open up a new lane on the semiconductor highway

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why Purdue ...

Study leverages chiral phonons for transformative quantum effect

Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that in solids, the vast number of atoms often drowns out the ...

page 1 from 18

Phonon

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, such as solids and some liquids. Often referred to as a quasiparticle, it represents an excited state in the quantum mechanical quantization of the modes of vibrations of elastic structures of interacting particles.

Phonons play a major role in many of the physical properties of solids, including a material's thermal and electrical conductivities. Hence the study of phonons is an important part of solid state physics.

A phonon is a quantum mechanical description of a special type of vibrational motion, in which a lattice uniformly oscillates at the same frequency. In classical mechanics this is known as the normal mode. The normal mode is important because any arbitrary lattice vibration can be considered as a superposition of these elementary vibrations (cf. Fourier analysis). While normal modes are wave-like phenomena in classical mechanics, they have particle-like properties in the wave–particle duality of quantum mechanics.

The name phonon comes from the Greek word φωνή (phonē), which translates as sound or voice because long-wavelength phonons give rise to sound.

The concept of phonons was introduced in 1932 by Russian physicist Igor Tamm.

This text uses material from Wikipedia, licensed under CC BY-SA